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Abstract 

In the framework of the observed-score equating methods for the nonequivalent groups with 

anchor test design, there are 3 fundamentally different ways of using the information provided by 

the anchor scores to equate the scores of a new form to those of an old form. One method uses 

the anchor scores as a conditioning variable, such as the Tucker method and poststratification 

equating. A second way to use the anchor scores is as the middle link in a chain of linking 

relationships, such as chain linear equating and chain equating. The third way to use the anchor 

scores is in conjunction with the classical test theory, such as Levine observed-score equating 

and the newly created hybrid Levine equipercentile equating and poststratification equating 

based on true anchor scores. The purpose of this paper is to demonstrate that with real data, 

under certain conditions, hybrid Levine equipercentile equating and poststratification equating 

based on true anchor scores outperform both poststratification equating and chain equating. 

Key words: nonequivalent groups with anchor test design, hybrid Levine equipercentile 

equating, poststratification equating based on true anchor scores, Levine observed-score equating 
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In the nonequivalent groups with anchor test (NEAT) design (also called the common 

items or anchor test design), there are several ways to use the information provided by the 

anchor in the equating process. One of the NEAT design equating methods is the linear 

observed-score Levine method (Kolen & Brennan, 2004), which is based on a classical test 

theory model of the true scores on the test forms to be equated and on the anchor test (Levine, 

1955). The kernel Levine equipercentile under kernel equating (KE) framework was introduced 

in von Davier, Fournier-Zajac, and Holland (2007). Chen and Holland (2010); Chen, Livingston, 

and Holland (2011); Chen (2012); and Chen and Livingston (2012) used the same KE framework 

to develop a general version of Levine equating.  

In her dissertation, Hou (2007) investigated one of the hybrid Levine equipercentile 

equatings (von Davier et al., 2007) and compared it to two classes of methods: chain equating 

and poststratification equating. She used simulated data generated by an item response theory 

(IRT) model with the conditions (80 cases) preset on combinations of five factors: sample size 

(two sizes), group proficiency difference (five cases), test length (two lengths), ratio of the 

number of common items to total test length (two ratios), and similarity of form difficulty (two 

cases). She concluded that hybrid Levine equipercentile equating yielded the smallest weighted 

absolute bias under almost all conditions (78 out of 80 times; Hou, 2007, p. 87). In particular, if 

the group proficiency difference is a combination of differences in the first two moments of the 

distributions, then the hybrid Levine equipercentile equating method performed best (p. 80). 

However, although very attractive theoretically, none of the kernel Levine equipercentile 

approaches seem to have been adopted in equating applications except for the equivalent 

equating method used in IRT equating (Chen, 2012). 

The purpose of this paper is to summarize prior work on extensions of the Levine 

equating methods and argue for the practical benefits of these new methodologies. The Levine 

observed-score equating method is often computed in practical applications for comparison 

purposes because it is sometimes more accurate than other linear equating methods (Mroch, Suh, 

Kane, & Ripkey, 2009; Petersen, Marco, & Stewart, 1982). In situations when a linear equating 

function is not satisfactory, an equipercentile version of the Levine function is desirable. There 

are several versions of equipercentile Levine equating. One is a hybrid equating function that 

combines linear and nonlinear equating functions in a systematic way that preserves the 

symmetry required of equating functions (von Davier et al., 2007); another is poststratification 
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equating on true anchor scores, with a relationship to Levine equating that is parallel to the 

relationship between poststratification equating and Tucker equating (Chen & Livingston, 2012). 

The general form of the Levine function will be soon available in KE Software at Educational 

Testing Service. 

This paper discusses several ways to create an equipercentile version of the Levine linear 

observed-score equating method. It uses ideas from von Davier, Holland, and Thayer (2004b) 

and from Chen and Holland (2010) and exploits the general structure of the observed-score 

equating framework (von Davier, 2011, 2013). We present a general theoretical proposal and the 

results from two empirical studies. In one of the studies the results are derived under stronger 

assumptions than the general theory. The other study is an illustration of the methods with a real 

data set. 

In NEAT design, the two test forms to be equated, X and Y, are taken, by two different 

samples of examinees; each sample is drawn from a different population, denoted here by P and 

Q. In this paper, X is called the new form and Y the old form, and the scores from X are placed on 

the scale of Y. In the NEAT design, it is not assumed that P and Q are similar in any way. To 

adjust for the ability differences in the two samples, a set of common items, A, is taken by the 

examinees from both samples. This data collection arrangement is shown in the design table (von 

Davier et al., 2004b), illustrated in Table 1.  

Table 1 

The Design Table for the Nonequivalent Groups With Anchor Test (NEAT) Design 

 X A Y 

P    

Q    

Note. Checkmarks denote that examinees in the samples indicated by the rows have scores on the 

test indicated by the columns. 

If the scores of A are included in the scores of X (for Population P) or Y (for Population 

Q), then the anchor is called an internal anchor; otherwise, the anchor is called an external 

anchor. 

In the framework of the observed-score equating methods for the NEAT design, there are 

three fundamentally different ways of using the information provided by the anchor scores, A, to 
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equate the scores of X to those of Y. One method uses A as a conditioning variable (or covariate). 

In this method, the conditional distributions of X given A and of Y given A are weighted by a 

distribution for A to estimate the score distributions (or their first two moments) for X and Y in a 

hypothetical target population, T. T is an example of a synthetic population, a concept introduced 

in Braun and Holland (1982), and denoted there as T = wP + (1 – w)Q. The fraction, w, is the 

proportion of T that comes from P. This use of A is reminiscent of poststratification in survey 

research, and we follow von Davier, Holland, and Thayer (2004a, 2004b) in referring to methods 

based on this approach as poststratification equating (PSE). 

The PSE methods include both linear and equipercentile methods. Examples of linear 

PSE methods include the Tucker method (Kolen & Brennan, 2004), the Braun-Holland method 

(Braun & Holland, 1982; Kolen & Brennan, 2004), and the PSE linear method of KE (von 

Davier et al., 2004b). The PSE equipercentile methods include both frequency estimation (Kolen 

& Brennan, 2004) and the KE method of equipercentile PSE (von Davier et al., 2004b). 

A second way to use A is as the middle link in a chain of linking relationships—X to A 

and A to Y. We will refer to equating methods based on this approach as chain equating (CE). An 

important difference between PSE and CE is that in the former there is an explicit target 

population, T, whereas in the latter T plays no explicit role. However, von Davier et al. (2004a, 

2004b) showed that in order for CE to produce bona fide observed-score equating functions, 

certain assumptions that involve an implicit synthetic population, T, must hold. 

The CE approach also includes both linear and equipercentile methods. Examples of CE 

linear methods include chain linear equating (Angoff, 1971/1984; Livingston, 2004) and the KE 

method of linear CE (von Davier et al., 2004b). The CE equipercentile methods include chain 

equipercentile equating (Angoff, 1971/1984; Livingston, 2004) and the KE method of 

equipercentile CE (von Davier et al., 2004b). 

The third use of A in the NEAT design is the Levine linear method (Kolen & Brennan, 

2004; Levine, 1955). This method uses a classical test theory model for X, Y, and A to estimate 

the means and variances of X and Y on the target population from PSE, T. These four moments 

are sufficient to estimate a linear equating function, defined in (5). 

We will review Levine observed-score linear method in the next section. The following 

sections are: the hybrid equipercentile Levine equating; the poststratification equating on true 
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anchor scores (TAS) and its relations to both Levine observed-score equating (OSE) and IRT 

equating; comparisons of several equating methods on real data; and the discussion section. 

Review of the Levine Observed-Score Linear Method 

The linear Levine observed-score equating was originally proposed by Levine (1955) and 

further developed in Kolen and Brennan (2004). 

We assume a classical test theory model for X, Y, and A, as shown in (1): 

τ ε , τ ε , and τ εX X Y Y A AX Y A= + = + = + , (1) 

where the error terms, εX , εY , and εA , have zero expected values and are uncorrelated with each 

other and with the true scores, τX , τY , and τA , over any target population of the synthetic form, T 

= wP + (1 – w)Q and for any choice of 0 ≤ w ≤ 1. From (1), the basic equations in (2) follow for 

any T of this form: 

( | ) (τ | )XT XE X T E Tµ = = , 

( | ) (τ | )YT YE Y T E Tµ = = , (2) 

and  

( | ) (τ | )AT AE A T E Tµ = = . 

A critical assumption of Levine’s method is congenericity, which may be formulated as 

the two population invariance assumptions, LL1 and LL2, in (3) and (4). 

LL1: For any target population, T, 

τ τX Aa b= + . (3) 

LL2: For any target population, T, 

τ τY Ac d= + . (4) 

In LL1 and LL2, the values of the linear parameters, a, b, c, and d, are assumed to be the 

same for any T of the synthetic form, so that the linear relations between the true scores of X and 

Y with A are population invariant. Assumptions LL1 and LL2 imply that for any T, the true 

scores of the three tests are perfectly correlated. This is the classical test theory way of asserting 
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that the three tests measure the same thing but not necessarily in the same scale or with the same 

reliability. 

The assumptions, LL1 and LL2, may be used to derive formulas for the means and 

standard deviations of X and Y on T. These then may be used to define the Levine linear-

observed-score equating function, LinXY T(L)(x) in (6). The results are given in Kolen and Brennan 

(2004, p. 122) and make use of the reliability formulas derived by Angoff (1982). Angoff 

derived useful estimates for the reliability ratios that make use of data that are available in the 

NEAT design. Angoff’s estimates take different forms, depending on whether A is internal or 

external to the two tests, X and Y. 

In the rest of this paper, we assume that the Levine estimates, ( )µXT L , ( )µYT L , ( ) ,XT Lσ  and 

( )σYT L , of the means and standard deviations of X and Y on T are available. 

In general, any linear equating function is formed from the first two moments of X and Y 

on T as 

Lin ( ) ( )YT
XY T YT XT

XT

x x 

σ
= µ + − µ

σ
. (5) 

The Levine observed-score linear equating function is obtained from (5) when the first two 

moments of X and Y are estimated by the Levine estimates, as in (6). 

( )
( ) ( ) ( )

( )

Lin ( ) ( )YT L
XY T L YT L XT L

XT L

x x 

σ
= µ + − µ

σ
. (6) 

Even though it is restricted to be linear, the Levine linear function is often computed for 

comparison purposes with other nonlinear methods. This is because under some circumstances it 

is more accurate than other linear equating methods (Mroch et al., 2009; Petersen et al., 1982). 

Hybrid Equipercentile Levine Equating  

In their paper, von Davier et al. (2007) proposed a general way to create equipercentile 

versions of the Levine linear method using the methods of KE. An approximate version of this 

approach is illustrated with data from a special study.  
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The Relation Between Linear and Equipercentile Equating Functions 

Following von Davier et al. (2004a, 2004b), all observed-score equating functions linking 

X to Y on T can be regarded as equipercentile equating functions that have the form shown in (7): 

1Equi ( ) ( ( ))XY T T Tx G F x−
 = , (7) 

where FT(x) and GT(y) are forms of the cumulative distribution functions (cdfs) of X and Y on T, 

and y = 1( )TG p−  is the inverse function of p = GT(y). Different assumptions about FT(x) and GT(y) 

lead to different versions of EquiXY T(x) and therefore to different observed-score equating 

functions. 

Let µXT , µYT , σXT , and σYT denote the means and standard deviations of X and Y on T that 

are computed from FT(x) and GT(y), as in ( )µ = ∫XT TxdF x , and so on. The linear equating 

function in (5) that uses the first two moments computed from FT(x) and GT(y) will be said to be 

compatible with EquiXY T(x) in (7). It is the compatible version of LinXY T(x) that appears in 

Theorem 1 below. We return to the issue of compatible linear and equipercentile equating 

functions in more detail later. Theorem 1 is proved in von Davier et al. (2004b) and connects the 

equipercentile function, EquiXY T(x), in (7) to its compatible linear equating function, LinXY T(x), 

in (5). This theorem has been known in other statistical applications as describing the shift model 

or location-scale model (Doksum & Sievers, 1976, p. 429). 

Theorem 1: For any population, T, if FT(x) and GT(y) are continuous cdfs, and F0 and G0 are the 

standardized cdfs that determine the shapes of FT(x) and GT(y), that is, both F0 and G0 have mean 

0 and variance 1 and 

0
μ( )

σ
XT

T
XT

xF x F
 −

=  
 

 and 0
μ( )

σ
YT

T
YT

yG y G
 −

=  
 

,  (8) 

then 

1Equi ( ) ( ( )) Lin ( ) ( )XY T T T XY Tx G F x x R x−
  = = + ,  (9) 

where the remainder term, R(x), is equal to  
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μσ
σ

XT
YT

XT

xr
 −
 
 

, (10) 

and r(z) is the function 

( )1
0 0( ) ( )r z G F z z−= − . (11) 

When FT(x) and GT(y) have the same shape, it follows that r(z) = 0 in (11) for all z, so that the 

remainder in (9) satisfies R(x) = 0, and, thus, EquiXY T(x) = LinXY T(x). 

Theorem 1 can be viewed as a sharpening of the well-known fact that when FT(x) and 

GT(y) have the same shape, the equipercentile equating function is identical to the linear equating 

function. It should be pointed out that the symmetry property of equating is preserved in 

Theorem 1. 

It is important to recognize that, for the various methods used in the NEAT design, it is 

not always true that the means and standard deviations of X and Y used to compute LinXY T(x) are 

the same as those from FT(x) and GT(y) that are used in (7) to form EquiXY T(x). The compatibility 

of a linear and an equipercentile equating function depends on both the equating methods and 

how the continuization process for obtaining FT(x) and GT(y) is carried out. 

The continuization method for KE/PSE insures that the means and standard deviations of 

FT(x) and GT(y) are the same as those of the underlying discrete distributions for any choice of 

bandwidth. In KE, LinXY T(x) corresponds to large bandwidths, whereas EquiXY T(x) corresponds 

to smaller bandwidths that optimize a penalty function (von Davier et al., 2004b). Thus, in 

KE/PSE, the four moments underlying LinXY T(x) are the same as those of the FT(x) and GT(y) 

that underlie EquiXY T(x). Hence, for KE/PSE, the linear and equipercentile functions are 

compatible. 

However, the traditional method of continuization by linear interpolation (Kolen & 

Brennan, 2004) does not reproduce both the mean and variance of the underlying discrete 

distribution. The piece-wise linear continuous cdf that the linear interpolation method produces 

is only guaranteed to reproduce the mean of the discrete distribution that underlies it. The 

variance of the continuized cdf is larger than that of the underlying discrete distribution by 1/12 

(Holland & Thayer, 1989). Moreover, the four moments of X and Y on T that are implicitly used 
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by the chain linear or the Tucker linear method are not necessarily the same, nor are they the 

same as those of the continuized cdfs of frequency estimation or the chain equipercentile 

methods. To our knowledge, there is, at best, an incomplete understanding of the compatibility of 

the various linear and equipercentile methods used in practice for the NEAT design. 

The KE/PSE method has all the necessary ingredients for using the result of Theorem 1. 

Because of this, for KE/PSE we may calculate the function r(z) in (11) directly without first 

forming F0 and G0. This computation is summarized in Theorem 2. 

Theorem 2: If EquiXY T(x) and LinXY T(x) in (5) and (7) are compatible, then r(z) in (11) may be 

computed as 

[ ]1(z)= Equi ( ) Lin ( )XY T XT XT XY T XT XT
YT

r z z  µ + σ − µ + σ
σ

. (12) 

The proof of Theorem 2 simply solves for r(z) using (9) and (10), so we omit it. 

A general proposal for forming hybrid equipercentile equating functions. With this 

preparation, we are in a position to propose a way of obtaining a variety of hybrid equipercentile 

equating functions of the form (7) whose linear part is the linear Levine equating function in (6). 

The idea is to use (9) with the linear equating function being the Levine linear function, as shown 

in (13), below: 

( )Lin ( ) Lin ( )  =XY T XY T Lx x  (13) 

and the remainder function, R(x), being computed from an r(z) function found using (12) from 

some other appropriate equating method and the Levine estimates, ( )µXT L , ( )σXT L , and ( )σYT L . 

Following this recipe, our proposed hybrid equipercentile Levine equating function has 

the form in (14): 

( )
( ) ( ) ( )

( )

μ
Equi ( ) Lin ( ) σ .

σ
XT L

XY T L XY T L YT L
XT L

x
x x r  

 −
= +   

 
 (14) 

Equation (14) preserves the symmetry property that is required by equating functions (Dorans & 

Holland, 2000). 

Using (12), we may express EquiXY T(L) in terms of the Levine linear function, LinXY T(L), 

and the other two equating functions that were used as well. This is summarized in (15), 
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( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

Equi ( ) Lin ( )

σ σ σEqui μ μ Lin μ μ .
σ σ σ

XY T L XY T L

YT L XT XT
XY T XT XT L XY T XT XT L

YT XT L XT L

x x

x x

  

  

= +

     + − − + −            

 (15) 

The argument of both LinXY T and EquiXY T in (15), 

( )( )
( )

σμ μ
σ

XT
XT XT L

XT L

x+ − , 

has the form of a linear equating function that links the Levine linear scale to that of the linear 

scale based on the moments,µXT ,µYT , σXT , and σYT . 

The hybrid PSE-Levine equipercentile equating function. In the KE version of PSE, 

the anchor test is used as a covariate on which the score probabilities for X and Y are 

poststratified and reweighted to obtain estimated score probabilities on T—{rjT} for X and {skT} 

for Y. These are then continuized to produce two cdfs, FT(PSE)(x) and GT(PSE)(y). As mentioned 

earlier, because of the way KE continuization works, each of the two continuous cdfs has the 

same means and standard deviations as the corresponding discrete score probability distributions, 

{rjT} or {skT}. Thus, we can simply use {rjT} and {skT} to obtain ( )µXT PSE , ( )µYT PSE , ( )σXT PSE , and

( )σYT PSE , via the usual definitions, 

( )μ ,j j
j

XT PSE x r= ∑ T  ( )μ ,k k
k

YT PSE y s= ∑ T  (16) 

2 2
( ) ( )σ ( μ ) ,XT PSE j XT PSE jT

j
x r= −∑  2 2

( ) ( )σ ( μ ) .YT PSE k YT PSE kT
k

y s= −∑  (17) 

Thus, for the KE version of PSE, forming integrals like ( ) ( )XT PSExdF x∫  to compute ( )µXT PSE and 

so on is unnecessary. 

In order to use (15), it is necessary to have a way of calculating the KE/PSE functions, 

EquiXY T(PSE)(x) and LinXY T(PSE)(x), for any value of x, not at just the scores values, {xj}. We 

assume that this calculation is possible, though it may require modification of existing software. 

Then, values of ( )µXT PSE and ( )σXT PSE  are used as the values of µXT , σXT in (15) to compute the 

linear transformation 



10 

( )( )

( )

σ
* μ μ

σ
XT PSE

XT(PSE) XT(L)
XT L

x x= + − . (18) 

In (18), x is a value at which we want to compute EquiXY T(L)(x) defined in (14) or (15). Finally, 

( )σYT PSE is used as σYT to compute the nonlinear remainder term in (15) at the transformed value, 

x*, as shown in (19), 

( ) ( )( )
( ) ( )

( )

σ
Equi * Lin * ,

σ
YT L

XY T PSE XY T PSE
YT PSE

x x   −   (19) 

and the result in (19) is then added to the Levine linear function, LinXY T(L)(x), to compute EquiXY 

T(L)(x), as shown in (20), 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )

σ
Equi Lin Equi * Lin * .

σ
YT L

XY T L XY T L XY T PSE XY T PSE
YT PSE

x x x x     = + −    (20) 

The result in (20) is the PSE-Levine equipercentile equating function. 

If the means and variances on T derived under the Levine assumptions are the same as the 

means and variances on T derived under the PSE assumptions, then (18) simplifies to the identity 

function, x* = x, and (20) reduces to 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )Equi Lin Equi Lin .XY T L XY T L XY T PSE XY T PSEx x x x     = + −   (21) 

It is an empirical question if such a simplification is realistic, but (21) only requires the 

computation of the difference between the two KE/PSE functions, ( )( )Equi  XY T PSE x  and 

( )( )Lin  XY T PSE x . 

More realistically, (21) stands if we assume that the difference between the two 

equipercentile functions is contained in the difference of their linear approximations. 

Later in this paper, we illustrate the ideas behind ( )( )Equi  XY T L x  using (21) as an approximate 

PSE-Levine equipercentile equating function. 
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Poststratification Equating Based on True Anchor Scores (PSE-TAS) 

In Chen and Livingston (2012), a different equipercentile Levine equating was 

constructed, using a generalized version of the kernel equating framework introduced in von 

Davier (2011, 2013). 

Observed-Score Equating (OSE) Framework 

The OSE framework was derived from the KE framework, and it was presented in von 

Davier (2011, 2013). The OSE framework has five steps, and it also includes Theorem 1: 

Presmoothing. Presmoothing can be done by using loglinear smoothing (the default choice in the 

KE framework), IRT models (a discussion will be given later), spline functions, or other models. 

Some models, such as IRT models, can produce presmoothed distributions of variables of either 

observed scores or true scores, or both. Some considerations include the following: 

• Estimating the score probabilities on the target population. Here, a specified method 

will be used. For NEAT designs, the common method is either CE or PSE. The 

results are either two discrete univariate distributions for PSE or four distributions for 

CE. Local equating can be also employed (Wiberg, van der Linden, & von Davier, in 

press). 

• Continuization. A Gaussian kernel is often used to transfer the discrete distributions 

into continuous ones. The choice of a parameter, called bandwidth, will determine 

whether the equating is linear (large bandwidth) or curvilinear (small bandwidth) in 

the following step. However, other kernel choices or other continuization methods are 

possible (see von Davier, 2011, for details). 

• Computing the equating function from the equipercentile equating on the continuized 

distributions.  

• Computing the standard error of equating and related accuracy measures. More and 

more evidence suggests that distributions of other types beside observed scores may 

be relevant also to a given equating task, and the framework can be applied to them as 

well (see the appendix).  

The OSE framework unifies the whole equating process, where details can be studied 

more closely to reveal what really makes two equating methods different. One can see that if an 

equating process can be put under the framework, it can only be different from another equating 
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within the same framework in three areas: model for fitting the data (in Step 1), basic equating 

procedure (in Step 2), and choice of the continuization (in Step 3).  

The construction of PSE-TAS. First, let us recall the definition of PSE. Let f(X|aj) be the 

conditional distribution of scores in Test X for examinees having anchor score aj, {p(aj)} and 

{q(aj)} be the anchor score distributions of examinees taking Test X and Test Y, respectively, 

then the score distribution of X on synthetic population T is: 

( ) ( | ) ( ) (1 ) ( ) .T j j jj
f X f X a wp a w q a = + − ∑  (22) 

Hence, FT(X), the cdf of X on T, can be computed accordingly. Similarly, we can get GT(Y), the 

cdf of Y on T. Then PSE from X to Y on T is the equipercentile equating from FT(X) to GT(X). If 

we replace the anchor test A by its true score component τA in this equating construction, we get a 

new score distribution of X on T: 

( ), ( | ) ( ) (1 ) ( ) .
A j j jT a a aj

f X f X wp w qτ
 = τ τ + − τ ∑  (23) 

where τ
ja is a value of the true anchor score, and a new cdf of X on T, ( ),τATF X . Similarly, 

( ),τATG Y can be constructed, and the poststratification equating based on true anchor scores 

(PSE-TAS) is the equipercentile equating from ( ),τATF X to ( ),τATG Y , which is the modified PSE 

(Wang & Brennan, 2007) conceptually. 

The following theorem is proved in Chen and Livingston (2012): 

Theorem 3: If all following conditions are satisfied: 

In Population P, the conditional mean of X on true anchor τA  is a linear function of τa , and the 

conditional covariance of X is constant on τA ,  

both the conditional mean of Y and the conditional covariance of Y on τA have the same properties 

in Population Q,  

both τX and τY are correlated perfectly with τA , and  

the variance of the error component of A is population invariant,  

then the linear equating from ( ),τATF X to ( ),τATG Y is the Levine observed-score equating. 
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Remark: Conditions 1–4 are equivalent to the assumptions for Levine observed-score equating. 

Because both of the score distributions, ( ),τATf X and ( ),τATg Y , are defined explicitly, the 

assumptions for the Levine equating are translated as the conditions that can be verified. 

This method was (re)discovered (the first version appeared in Wang and Brennan, 2007) 

when the first author studied the relationship between IRT observed-score equating and Levine 

observed-score equating, using the kernel equating framework. By presmoothing data with IRT 

models, and making both equatings linear, the simulation study shows that these two methods 

produce identical results (Chen, 2012). Chen concluded that IRT observed-score equating is the 

poststratification equating based on true anchor scores on data presmoothed by IRT models. 

There is a technical issue with PSE-TAS: No general method is available to get the 

bivariate distributions whose marginal distribution on the main test is of the raw scores, but 

whose marginal distribution on the anchor test is of the true scores in the classical test theory 

model. The alternative is to use a linear transformation on the bivariate distribution that 

preserves the means of both marginal distributions but changes standard deviations with 

calculated ratios. One such method is called PSEκ (Chen & Holland, 2010; Chen et al. 2011), 

where κ is a number in [0, 1]. PSE0 is the PSE method, while PSE1 is equivalent to PSE-TAS but 

may have discrepancies on the points near both ends of the score range. PSEκ can be applied to 

test forms either with an internal anchor or an external anchor. Another method is called 

modified PSE (Wang & Brennan, 2007). Their study only applied the method to test forms with 

internal anchors, and the computation of the ratios to change the standard deviations is also 

different. 

Comparisons of Levine Methods With CE and PSE  

Extensive research has been done to compare the classical equating methods and IRT 

equating methods. Chen (2012) provides an extensive but still incomplete list of research papers 

in this area. However, many papers in the list do not answer the question of which method is 

closer to the true equating. Some papers use IRT models for simulated data, and consequently 

use IRT equating as the true equating. As pointed out in Chen (2012), IRT equating can be 

regarded as a curvilinear Levine equating with data presmoothed with an IRT model. Using it as 

a criterion will be definitely in favor of the Levine-type methods discussed in this paper. 

Therefore, we want to use real data and show that, under certain circumstances, Levine-type 
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methods will do better than other commonly used methods, although, in many cases, the opposite 

is true.  

Why do different equating methods produce different equating results, particularly in 

terms of equated means? Research results indicate that many factors (content format, content 

difficulty, test form length, population ability, etc.) will contribute to the differences of the 

methods. Chen et al. (2011) make several assumptions to eliminate the impact of factors other 

than the population ability difference and find that Levine observed-score equating has the 

highest equated scores for X if the mean anchor test scores on Population P is higher than that on 

Population Q. Tucker equating resulted in the lowest equated scores, and the chain linear method 

produced scores between the other two methods. This phenomenon is well known to 

psychometricians and is mentioned in several research papers (e.g., see Holland, Sinharay, von 

Davier, & Han, 2008). Therefore, to demonstrate that Levine methods may work better than 

other methods, we need to construct two groups for which: 

• There is a notable difference on the means of their anchor test scores (the bigger the 

difference, the better the performance of the Levine methods). 

• The score distributions satisfy the assumptions for the traditional Levine observed-

score equating. 

In this paper, we will consider two circumstances, both represented by operational data. 

The first data set contains manipulated data as explained below. The second data set is a real 

operational data set.  

Data Analysis 

Design of the Comparisons 

 One way to construct a NEAT design such that the equatings on the design can be 

checked against a criterion is to split a long test with a large sample of examinees into two 

populations (P and Q) and three tests (two pseudo tests and an anchor test) as shown in Table 2, 

where the details of selections of P, Q, X, Y, and A will be discussed later. 
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Table 2 

The Design Table for the Pseudo-Test Data 

 X A Y 

P    

Q    

By ignoring the data for X in Q and Y in P, the scores from the pseudo-test data may be 

regarded as the NEAT design in Table 1, where the combined sample is regarded as from the 

synthetic population, T = wP + (1 – w) Q, with w proportional to the size of the sample from P. 

There is a second NEAT design that ignores the data for X in P and Y in Q. Then w is 

proportional to the size of Q. The data for X in Q and Y in P were used to augment this NEAT 

design to provide a criterion equating design that is not usually available. From Table 2, for the 

pseudo-test data, X and Y are seen to form a single-group (SG) design on T, the combined group. 

That is, everyone in T has scores for both X and Y. This SG design provides a criterion equating 

that the NEAT design attempts to approximate. We used the full data set to estimate the KE/SG 

design equipercentile function and treated it as the criterion equating for our analyses. Because 

this is not a simulation, truth is not known. Instead, this paper uses a criterion equating that was 

constructed on the same Population T as the equating functions of interest and through similar 

steps (presmoothing using loglinear models, continuization using Gaussian kernel) as the usual 

observed-score equating methods for the NEAT design. The equipercentile function was chosen 

because the two tests differ significantly in the shape of the distributions. 

All of the equatings went from X to Y so that X plays the role of the new form and Y is the 

old form. The presmoothing of the data was accomplished by fitting appropriate loglinear models 

to the discrete score probability distributions (Holland & Thayer, 2000), as discussed in von 

Davier et al. (2006), who examined these data in detail. 

Data Set 1  

The data we use to illustrate our approach come from von Davier et al. (2006). The 120-

item test had been taken by more than 10,000 examinees.  

First, Populations P and Q were constructed in such way that their performances are very 

different on the test and the conditional distributions based on their abilities are equivalent.  
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An IRT model is fitted with all test scores to determine each examinee’s ability (θ). The 

ability distribution is divided into 41 intervals centered at points from -4 to 4 with an increment 

of 0.2. Formula θ/8 + ½ is used to determine that how many examinees in each ability band are 

in Population Q. For example, if there are 200 examinees in the band that θ = 1, then 

200*(1/8+1/2)  = 125 examinees in the band are randomly assigned to Population Q. The 

statistics of P and Q are given in Table 3.  

Two unique 44-item pseudo-test scores, X and Y, and one 24-item, external-anchor test 

score, A, were carefully constructed from the item responses to form a longer 120-item test. The 

pseudo-tests, X and Y, were constructed in such a way that they were parallel in content but 

differed considerably in difficulty. On the combined group, the mean difference between X and Y 

was about 140% of the average standard deviation (see Table 3). One might decide to use the 

term linking rather than equating in a practical situation, where the test forms exhibit massive 

differences in difficulty. 

Table 3  

Comparison of the Examinees at the Two Administrations on the Pseudo-Tests 

Population Statistic X Y A 

Examinees in P Mean 34.3 25.5 15.5 

(n = 5,187) SD 5.7 6.5 4.2 

Examinees in Q Mean 36.9 28.8 17.4 

(n = 5,213) SD 4.6 6.1 3.8 

Combined group, T Mean 35.6 27.2 16.4 

(n = 10,400) SD 5.4 6.6 4.1 

In addition, the anchor test was designed to be parallel in content but targeted at a 

difficulty level between X and Y. The reliabilities of X and Y were about 0.78; their correlations 

with the external anchor, A, were from 0.74 to 0.77, on Populations P and Q, respectively.  

The results of von Davier et al. (2006) indicated that an equipercentile version of the 

Levine observed-score equating function might be an appropriate equating function for these 

data. This is due to the extreme difference in the difficulty of X and Y. One can see in Figure 1 

that the criterion equipercentile equating function is decidedly not linear.  
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The ranges of scores for X and Y were also modified to exclude many almost-empty cells 

because the equatings are very unstable in such ranges. The modified X score range is [13, 44] and 

the modified Y score range is [8, 44]. Only five records out of 10,405 were taken out of the original 

distribution.  

 

Figure 1. The criterion single-group (SG) kernel equating (KE) equipercentile equating 

function for the pseudo-test data. 

Results 

Four equating methods were compared against SG equating. They were KE/PSE, KE/CE, 

hybrid Levine (Equation 21), and PSE1 (Chen & Holland, 2010). To distinguish the impacts of 

group ability difference from the test form difficulty difference, all four equating methods were 

compared both from XP (Population P taking Test X) to YQ and from XQ to YP. 

The loglinear model for all bivariate distributions is (5, 5, 1). Since P and Q are of similar 

size, w is 0.5 for equating either from XP to YQ or from XQ to YP.  

Table 4 shows (a) the maximums, minimums, averages, and standard deviations of these 

differences and (b) the root mean squared errors (RMSE) of these differences. The RMSE, or 

error, is defined as 2 2

d
d sd+ , where d  is the mean of the differences of the equated scores (di 

= ai - bi, where ai and bi denote the equated scores of the score xi by two different methods, 

respectively) and sd is the standard deviation of these differences. All means, standard 

deviations, and RMSEs of the differences were calculated on uniform distributions. 
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Table 4 

Summary Measures of Differences Between KE/PSE, KE/CE, Hybrid Levine, and PSE1 and 

the Criterion, SG Linear Equating, Both From XP to YQ and XQ to YP 

Summary 

KE/PSE 

criterion 

KE/CE  

criterion 

Hybrid Levine 

criterion 

PSE1  

criterion 

NEAT type P to Q Q to P P to Q Q to P P to Q Q to P P to Q Q to P 

Mean difference 1.07  -1.01 0.47  -0.46 0.07  -0.38 0.36 –0.24 

SD difference 0.19  0.17 0.27  0.25 0.18  0.24 0.49  0.50 

Max difference 1.32  -0.47 0.92  -0.20 0.29  0.05 1.47 0.89 

Min difference 0.53 -1.29 0.00 -0.95 -0.52 –0.82 -1.11 –1.60 

RMSE difference 1.09  1.03 0.54  0.53 0.19  0.45 0.61  0.55 

Note. CE = chain equating, KE = kernel equating, NEAT = nonequivalent groups with anchor 

test, PSE = poststratification equating, RMSE = root mean squared error. 

Figure 2 shows the differences between the four NEAT equating functions and the SG 

(criterion) equating function from XP to YQ. It indicates that both Levine functions are close 

approximations to the criterion equating based on the combined group, although PSE1 exhibits 

the undesirable trend at both ends of the range that was mentioned before. Since the mean of AP 

is smaller than AQ, one can see that the Levine type equatings get the lowest equated scores, 

KE/CE has the middle equated scores, and KE/PSE has the highest equated scores—and the 

curves are almost parallel. This phenomenon has been seen by many psychometricians and has 

been discussed in Chen et al. (2011) for their linear counterparts: Levine observed-score 

equating, chain linear, and Tucker equating.  

Figure 3 shows the differences between the four NEAT equating functions and the SG 

(criterion) equating function from XQ to YP. This time, the trend is reversed, since the mean of AQ 

is larger than AP. Overall, the hybrid Levine method still outperforms other equating methods, 

but for the central range of X, PSE1 has the best result. 
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Figure 2. Differences between the four four nonequivalent groups with anchor test (NEAT) 

equatings from XP to YQ and the criterion single-group (SG) equating functions for the 

pseudo-test data. CE = chain equating. KE = kernel equating, PSE = poststratification 

equating. 

 

Figure 3. Differences between the four nonequivalent groups with anchor test (NEAT) 

equatings from XQ to YP and the criterion single-group (SG) equating functions for the 

pseudo-test data. CE = chain equating, KE = kernel equating, PSE = poststratification 

equating. 
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The approximate PSE-Levine equipercentile function using (21) and the criterion KE 

equipercentile SG equating function are remarkably close, followed by PSE1, then KE/CE and 

finally KE/PSE. But it should be mentioned again that the data for this study are constructed to 

satisfy the assumptions for Levine observed-score equating. If we construct the data differently, 

other methods may prevail. 

Data Set 2 

Finally, using real data from a teacher licensing test, we will demonstrate that if the two 

groups in the NEAT design are not too far apart, the Levine methods will produce similar results 

to other equating methods.  

The test has 91 items with 29 external anchor items. The old form was given in 2010, 

while the new form was given in 2011. Table 5 gives the statistics of both forms. 

Table 5  

Statistics of the New and Old Forms in a Teacher Licensing Test 

Form No. of 
examinees 

Test 
mean 

Test 
SD 

Anchor 
Mean 

Anchor 
SD 

New  1,258 65.0 11.5 19.5 4.7 

Old  4,948 65.3 11.7 20.0 4.6 

Note. The difference between two anchor means is only a 0.5 raw score point. 

Results 

Four equating methods were applied to the data. The results are shown in Figure 4.  

The score range is restricted to [15, 91] to avoid unstable equated values, since no test 

taker received a score less than 25. 

The anchor mean for the new form is lower than for the old form. Since PSE, CE, and 

both hybrid Levine and PSE1 are the curvilinear forms of Tucker equating, chain linear, and 

Levine observed-score equating, respectively, following the argument in Chen et al. (2011), it is 

not surprising to see that KE/PSE has the highest equated scores in general, followed by KE/CE, 

and then by hybrid Levine and PSE1, although they are much closer in this case than in the 

previous example. 
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Figure 4. Graph of the differences between the four nonequivalent groups with anchor test 

(NEAT) equatings and the X scores. CE = chain equating, KE = kernel equating, PSE = 

poststratification equating. 

Discussion 

Von Davier et al. (2007) proposed a general approach to creating a hybrid PSE-Levine 

equipercentile equating function that preserves the property of symmetry required of equating 

functions. The new function is based on a very basic decomposition of any equipercentile 

equating function into a linear and nonlinear part. We then suggest a hybrid that takes its linear 

part from the Levine linear function and its nonlinear part from some other equating method that 

includes compatible forms of equipercentile and linear functions. To the extent that the 

congeneric assumptions of the linear Levine function are satisfied and that the nonlinear part of 

the other equipercentile function is satisfactory, we would expect our proposal to be a useful 

addition to the methods for equating in the NEAT design. 

We believe that the close agreement between the criterion equipercentile equating and the 

approximate version of the Levine equipercentile function found by using the KE/PSE 

equipercentile and linear functions suggests that it will be fruitful to pursue the approach 

indicated in this paper. Moreover, we think that the basic principle of KE, that the continuized 

cdfs should preserve at least the first two moments of the underlying discrete distribution, found 

a serious use in this application. While it is the curvilinearity of equipercentile equating functions 

that usually gets the attention, the influence of the underlying means and variances should not be 
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forgotten. These factors both locate and scale any equipercentile function and can have major 

effects on it. 

Equation (15) allows for the possibility of a variety of different ways to combine the 

linear and nonlinear parts of different types of equating functions for the NEAT design. So far, 

we have explored only the combination of KE/PSE and the Levine linear method, but others are 

possible as well. For example, KE/CE may provide an alternative to KE/PSE in this regard. 

However, at this writing, we are unsure whether the KE/CE equipercentile and KE/CE linear 

functions share the same underlying first two moments on a target population and are, therefore, 

compatible in the sense used here. This is a possible area for future research. 

Our approach, especially (19), shows how important it is for equating software to allow 

for evaluating equating functions at values that are not just integer score values. We believe that 

investigations of the shapes of the r(z) functions in (11) can be used to shed light on the 

differences between practical equipercentile equating methods. Computing and comparing the 

r(z) functions for a variety of equipercentile methods appears to be a useful area for future 

research. 

Starting from Chen and Holland (2009), under the KE framework, several Levine 

equating methods have been created. These methods have natural relations with their linear 

counterparts. In particular, the relationship between PSE-TAS and Levine-OSE is almost 

identical to the relationship between PSE and Tucker equating (see Braun & Holland, 1982, for 

the second relationship). The only difference is that the first pair only use true anchor scores in 

their formulations while the second pair only use observed anchor scores.  

The work in Chen et al. (2011) connects the dots among all established equating methods 

for NEAT designs. The three most well-known (linear) equating methods—Levine, chain, and 

Tucker—are ordered in favor of the higher ability group. Along with their nonlinear 

counterparts, a family of equating methods is created in Chen (2011). Many new equating 

methods are created while the older ones have found their equivalences in the family. More work 

is planned in this direction. 

A technical issue has to be resolved for PSE-TAS and the majority of the methods in 

Chen (2011) to be useful in practice. Although PSEκ has a good approximation to each member 

in the family (Chen, 2011) with a specified κ, the discrepancies at the end points (shown in 

Figures 2 and 3) make it less desirable than another method, for example, hybrid Levine. 
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Before the introduction of the OSE framework (von Davier, 2011, 2013), the equating 

methods for NEAT designs appeared disconnected. The framework establishes connections 

between linear equatings and equipercentile equatings. Most importantly, it builds a system to 

classify equatings by dividing the whole process into steps where, at each step, the specified 

properties of an equating can be studied in great detail. With the generalized framework, many 

new equatings for NEAT designs can also be covered in the system, such as local equating 

(Wiberg et al., in press). Moreover, the distributions used can be of the observed scores, of the 

true scores, or one of the true scores and one of the observed scores. When two equatings are 

compared, the differences are displayed within each specification. For example, using IRT-OSE 

as the benchmark to compare CE with PSE is a biased comparison against PSE (Chen et al., 

2011). A classification table with the specifications on some equating methods mentioned in this 

paper is provided in the appendix.  

Future research should address several key issues. The first and most important one is 

how to determine the best equating method in practice. The newly created PSE-TAS gives 

researchers an insight in the equating process and offers a different kind of equating criterion for 

choosing the right equating method. The second issue is how to develop models/procedures to fit 

the data with true (anchor) scores well, particularly at the end score regions. The applications of 

the new data models are numerous. Not only are they needed for any equating methods that 

require true score distributions, they can also be used for direct computations of any statistics 

associated with the true scores.  
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Appendix 

Classification Table of Some Equating Methods 

Name Presmoothing 
model 

Score type Design Linearity 

Linear IRT-OSE IRT (X, TV), (Y, TV) PSE Linear 
IRT-OSE IRT (X, TV), (Y, TV) PSE Nonlinear 
Linear IRT-TSE IRT (TX, TV), (TY, TV) PSE/CE Linear 
IRT-TSE IRT (TX, TV), (TY, TV) PSE/CE Nonlinear 
(IRT-Tucker) IRT (X, V), (Y, V) PSE Linear 
(IRT-PSE) IRT (X, V), (Y, V) PSE Nonlinear 
(IRT-chain linear) IRT (X, V), (Y, V) CE Linear 
(IRT-CE) IRT (X, V), (Y, V) CE Nonlinear 
Tucker equating a Not specified (X, V), (Y, V) PSE Linear 
PSE Not specified (X, V), (Y, V) PSE Nonlinear 
Chain linear Not specified (X, V), (Y, V) CE Linear 

CE Not specified (X, V), (Y, V) CE Nonlinear 

Levine observed-score 

equating a 

Not specified (X, TV), (Y, TV) PSE Linear 

(PSE-TAS) b Not specified (X, TV), (Y, TV) PSE Nonlinear 
Levine-TSE Not specified (TX, TV), (TY, TV) PSE/CE Linear 
(Chain TSE equating)c Not specified (TX, TV), (TY, TV) PSE/CE Nonlinear 

Note. Names in parentheses are suggested. CE = chain equating, IRT = item response theory, 

OSE = observed-score equating, PSE = poststratification equating, TAS = true anchor scores, 

TSE = true score equating. 
a Both the Tucker method and Levine observed-score equating are approximated within the 

specified processes. b See Chen and Livingston (2012). c See Chen and Holland (2009). 




